
Optimizing File Access Patterns through the Spatio-Temporal
Pipeline for Parallel Visualization and Analysis

Boonthanome Nouanesengsy, John Patchett, James Ahrens, Andrew Bauer, Aashish Chaudhary,
Berk Geveci, Ross Miller, Galen M. Shipman, and Dean N. Williams

Abstract—As computational resources have become more powerful over time, availability of large-scale data has exploded, with
datasets greatly increasing their spatial and temporal resolutions. For many years now, I/O read time has been recognized as the
primary bottleneck for parallel visualization and analysis of large-scale data. Read times ultimately depends on how the file is stored
and the file access pattern used to read the file. In this paper, we introduce a model which can estimate the read time for a file
stored in a parallel filesystem when given the file access pattern. The type of parallel decomposition used directly dictates what
the file access pattern will be. The spatio-temporal pipeline is used to give greater flexibility to the file access pattern used. The
spatio-temporal pipeline combines both spatial and temporal parallelism to create a parallel decomposition for a task. Within the
spatio-temporal pipeline, all available processes are divided into groups called time compartments. Temporal parallelism is utilized
as different timesteps are independently processed by separate time compartments, and spatial parallelism is used to divide each
timestep over all processes within a time compartment. The ratio between spatial and temporal parallelism is controlled by adjusting
the size of a time compartment. Using the model, we were able to configure the spatio-temporal pipeline to create optimized read
access patterns, resulting in a speedup factor of approximately 400 over traditional file access patterns.

Index Terms—Visualization, Data Analysis, I/O, Modeling, Parallel Techniques

1 INTRODUCTION

The visualization and analysis of large-scale data in a timely manner
has been a recognized problem for many years now. With computa-
tional power increasing and the introduction of more sensitive instru-
mentation, data from both simulations and experiments are expected
to continue to grow. The result of these trends are ever larger datasets
containing higher spatial and temporal resolutions. The standard re-
sponse to tackle the large-data problem is to use parallel processing
capabilities. The main bottleneck in large-scale parallel analysis is
usually the I/O read step. One of the main factors in I/O performance
is how the file is accessed, and what the read pattern is. The parallel
decomposition strategy determines the read pattern.

For many of the common visualization tools used by the commu-
nity, parallel processing implies using a data-parallel approach em-
ploying only spatial parallelism. In this approach, the data is parti-
tioned spatially and spread out across several processes. Each process
then applies the same computation on their piece of data. Another op-
tion for data decomposition, temporal parallelism, involves processing
data from different timesteps simultaneously. The same computations
are applied to each timestep. How different decomposition approaches

• Boonthanome Nouanesengsy is with Los Alamos National Laboratory.
E-mail: boonth@lanl.gov.

• John Patchett is with Los Alamos National Laboratory. E-mail:
patchett@lanl.gov.

• James Ahrens is with Los Alamos National Laboratory. E-mail:
ahrens@lanl.gov.

• Andrew Bauer is with Kitware, Inc.. E-mail: andy.bauer@kitware.com.

• Aashish Chaudhary is with Kitware, Inc.. E-mail:
aashish.chaudhary@kitware.com.

• Berk Geveci is with Kitware, Inc.. E-mail: berk.geveci@kitware.com.

• Ross Miller is with Oak Ridge National Laboratory. E-mail:
rgmiller@ornl.gov.

• Galen M. Shipman is with Oak Ridge National Laboratory. E-mail:
gshipman@ornl.gov.

• Dean N. Williams is with Lawrence Livermore National Laboratory.
E-mail: williams13@llnl.gov.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 27 September 2013.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

affect the pattern used to read in files is often overlooked, despite the
fact that I/O performance is usually the performance bottleneck.

In this paper, we describe a model which can estimate the time
needed to load a file stored in a parallel filesystem when given the
file access pattern. Using this model, we can determine which parallel
approaches are best suited for a given file format and pipeline. To offer
more control over the file access pattern, we have developed a method
that employs both spatial and temporal parallelism, which we call the
spatio-temporal pipeline. In the spatio-temporal pipeline, all available
processes are separated into groups called time compartments. Tempo-
ral parallelism is employed as each time compartment independently
processes one or several timesteps concurrently. Within a time com-
partment, a timestep is partitioned spatially over all processes within
the time compartment, thus the spatio-temporal pipeline uses both spa-
tial and temporal parallelism. The spatio-temporal pipeline is a fully
integrated feature in the customized version of ParaView released with
UV-CDAT (Ultrascale Visualization - Climate Data Analysis Tools).
UV-CDAT [14] is a visualization and analysis tool specializing in
large-scale climate-data analysis.

Time-varying data can be stored in a myriad of different formats.
For example, all data over all timesteps can be stored in one master
file. Another possibility is to have separate spatial partitions stored
in different files, while each file spans multiple timesteps. How the
data is stored and what access patterns are used to read in the data
play a critical role in I/O read performance. In this paper, we focus
our discussion to a very common file format: the time-varying data
is composed of files, and each file represents one scalar field at one
timestep.

The benefits of temporal parallelism versus spatial parallelism may
not be readily apparent. Indeed, if all components of a parallel system
were to scale perfectly, there should be no difference in running time
between using spatial parallelism, temporal parallelism, and spatio-
temporal parallelism, for equal amounts of parallelization. This is be-
cause the same amount of work is being processed by equal amounts
of hardware. Ultimately, using spatio-temporal parallelism allows for
greater flexibility in selecting a file access pattern that will provide
greater I/O performance. The model is used to help determine which
file access patterns should be used, as well as helping to determine
parameter values such as time compartment size.

In this paper, we contribute a model which estimates the total run-
ning time of a parallel visualization and analysis pipeline, including



the I/O read step. We also contribute the spatio-temporal pipeline,
which is integrated into a general purpose visualization tool.

2 RELATED WORK

Attempts have been made to address I/O performance for visualiza-
tion of large datasets. Some have improved I/O performance for
post processing by using systems connected to faster storage such as
solid state drives (SSDs) [3][8]. Mitchell et al [7], using VisIO, re-
alized performance gains over the traditional high performance par-
allel file system by extending the ParaView system to support the
data-intensive Hadoop file system. Preprocessing data before post-
processing has been shown capable of lessening I/O bandwidth re-
quirements. Woodring et al [16] encode raw data in a JPEG 2000
format to enable multi-resolution streaming over low bandwidth con-
nections. In-situ, in-transit and hybrid combinations of these two
paradigms of producing visualization and analysis products has been
used to lessen the necessity of post-processing, mitigating associated
I/O issues [5][12][13].

Parallel post-processing of climate data is of major concern.
Woitaszek et al [15] gained performance by parallelizing a post-
processing workflow for climate data using the Swift scripting lan-
guage, but noted that the post-processing data-intensive workflow was
being limited by I/O performance, with parallelism only scaling to 32
processes. On the other hand, our work is focused primarily on I/O
performance scaling to thousands of processes.

Both spatial and temporal parallelism are utilized in this paper.
Childs et al [4] showed through a series of large parallel visualiza-
tion experiments that pure parallelism analysis operations work at ex-
treme scales, but I/O times became very large, suggesting that the I/O
performance required further study. The TECA project [11] reports
good temporal parallelism performance for climate data, but has little
parallel I/O or native spatial parallelism support, which creates a prob-
lem for data with large spatial bounds. Our model helps explain why
end-to-end scaling of pure spatial or pure temporal pipelines fail, and
provide an example spatio-temporal pipeline that is capable of simul-
taneously leveraging both of these types of parallelism in a balanced
way.

Work has been performed to enable developers and end users the
ability to alter data decompositions and thus affect read times. Kendall
et al [6], using their BIL (Block I/O Layer) software, show consid-
erable performance gains by aggregating smaller requests into larger
requests which cover more contiguous regions of the file on disk (two-
phase collective I/O). They also support the simultaneous reading of
multiple files, allowing for large contiguous reads from each parallel
rank. Nouanesengsy et al [9] effectively used this I/O solution for a
custom add-on to the OSUFlow library. Peterka et al [10] provide a
generalized library for building visualization algorithms on top of con-
figurable domain decompositions, impacting I/O access patterns which
are executed using a variety of library access methods, including BIL.
Our contribution of a model will help users of these tools and systems
make more wise data decomposition decisions.

Biddiscombe et al [2] introduced the concept of time to the Par-
aView pipeline. While this work enabled the serial processing of spa-
tially decomposed time steps in a general purpose tool, our work en-
ables decomposition in both space and time, allowing for the simulta-
neous processing of multiple time steps.

3 SPATIAL AND TEMPORAL PARALLELISM

Spatial parallelism is a parallel decomposition in which data is spa-
tially partitioned over all available processes. Each process then ap-
plies the same set of computations on their piece of data. When
employing spatial parallelism, timesteps are processed in serial, i.e.
timestep 0 is processed, then timestep 1 is processed, etc. One side
effect of spatial parallelism is that increasing the number of processes
results in each timestep being spatially partitioned into more pieces,
and each piece becomes smaller. According to the read model out-
lined in Section 5.5, this behavior adversely affects the read pattern
and impairs I/O performance.

P0 P1 P2 P3

P4 P5 P6 P7

TS0

Spatial
P0 P1 P2 P3

P4 P5 P6 P7

TS1 TS2

P0 P1 P2 P3

P4 P5 P6 P7

TS3

P0 P1 P2 P3

P4 P5 P6 P7

Program Progression

Spatio-Temporal
Time-Independent

P4 P5

P6 P7

TS1

TC2

TS0

TC1 P0 P1

P2 P3

TS2

Spatio-Temporal
Time-Dependent

P4 P5

P6 P7

TS1

TC2 P4 P5

P6 P7

TS3

P0 P1

P2 P3

TS0

TC1 P0 P1

P2 P3

TS2

Reduction

P4 P5

P6 P7

TS3

P0 P1

P2 P3

Fig. 1. Spatial parallelism and the spatio-temporal pipeline. Eight pro-
cesses are used for four timesteps. Timestep i, T Si, is represented by
a black rectangle. Red rectangles indicate spatial partitions, with the
label Pi indicating which process gets that partition. TC1 and TC2 are
the two time compartments used. (Top) Using only spatial parallelism
creates eight partitions per file, and files are processed serially. (Middle)
The time-independent use case for the spatio-temporal pipeline. Eight
processes are split into two time compartments. Each time compart-
ment processes two timesteps. (Bottom) The time-dependent use case
for the spatio-temporal pipeline. A reduction step is performed after all
timesteps have been processed.

Temporal parallelism is a method in which multiple timesteps are
processed in parallel. This is a form of pipeline parallelism, in which
multiple pipelines are instantiated in order to process multiple inputs at
once. Temporal parallelism usually requires large amounts of memory,
as each process will load an entire timestep. Because of this, pure
temporal parallelism is not a viable option for processing data with
large spatial extents.

4 THE SPATIO-TEMPORAL PIPELINE

The spatio-temporal pipeline was designed to utilize both spatial and
temporal parallelism, which allows for better control of the access pat-
tern used to read files. Spatio-temporal parallelism is accomplished
by first partitioning all available processes into groups called time
compartments. Each time compartment is responsible for process-
ing timesteps. Time compartments perform computations indepen-
dently of each other. Each timestep is spatially partitioned over all
processes within the time compartment. If there are more timesteps
than time compartments, then it is possible for a time compartment to
process multiple timesteps. For example, if there are two time com-
partments and six timesteps, then each time compartment will pro-
cess three timesteps. Each time compartment loads one timestep at
a time, and when a timestep is finished the next available timestep is
then loaded. For our implementation, each time compartment contains
the same number of processes, thus the number of available processes
must be evenly divisible by the size of a time compartment. An il-
lustration of the differences between the spatial and spatio-temporal
method are shown in Figure 1.

In the spatio-temporal pipeline, the ratio between spatial and tempo-
ral parallelism can be changed by adjusting the size of a time compart-
ment. Assuming the number of total processes is constant, if the time
compartment size is large, then there are few time compartments over-



all. This leads to lower temporal parallelism, since fewer timesteps
are processed concurrently, and higher spatial parallelism, since each
timestep will be partitioned into more pieces. On the other hand, if the
size of a time compartment is lowered, the total number of time com-
partments becomes higher. This allows for more timesteps to be pro-
cessed in parallel, thus temporal parallelism is increased, while low-
ering the number of pieces each timestep is split into, resulting in less
spatial parallelism.

The spatio-temporal pipeline has two use cases, illustrated in Fig-
ure 1. The first, which we term the time-independent use case, is the
situation in which timesteps can be processed independently, and the
operations do not require any communication between timesteps. Ex-
amples of such operations include computing the isosurface of each
timestep and creating an image of a scalar field for each timestep.

The second use case involves operations which do require commu-
nication between timesteps, but which are associative and do not re-
quire a specific temporal order of operations to compute. This use case
is called the time-dependent use case. This class of operations include
several statistical methods. Currently the spatio-temporal pipeline sup-
ports computing the point-wise maximum, minimum, average, and
standard deviation over certain time periods. For the climate com-
munity, averaging data in one time period to convert it into another
time period is a very common operation. One example would be tak-
ing monthly temperature averages and converting them into seasonal
or yearly averages. When executing the time-dependent use case,
each process will compute the chosen statistic for its given data parti-
tion. Since a process will always receive a piece with the same spatial
bounds across different timesteps, the statistic is computed and accu-
mulated for those spatial bounds. When all timesteps have been pro-
cessed, a reduction step is performed in which all time compartments
send their results to the first time compartment. The time-dependent
use case assumes that the grid does not change over time. Time-
varying grids are not currently supported.

This paper will focus on describing and using a model based on
the first use case, the time-independent one. A model for the time-
dependent use case is planned for future work.

Despite these two use cases covering a large number of visual-
ization and analysis algorithms, there are still some operations in
which the spatio-temporal pipeline is incompatible. Time-dependent
operations which are not associative and require processing through
timesteps in a certain order are currently not supported in the spatio-
temporal pipeline. This class of operations include pathline advection
and Finite-Time Lyapunov Exponent (FTLE) computation.

5 MODELS

As mentioned earlier, large-scale visualization and analysis tasks are
usually bottlenecked by the I/O read step. The chosen parallel decom-
position approach will determine what the file access pattern is, and
greatly affects I/O performance. In order to illuminate how best to
configure the spatio-temporal pipeline to get an optimized read pat-
tern, we develop a model for a pipeline within the time-independent
use case. A model for the spatio-temporal pipeline is introduced, as
well as one for a pipeline using only spatial parallelism.

For modeling purposes, we use the following pipeline:

read → isosur f ace → write isosur f ace (1)

We assume that there is a time-varying dataset stored in the format
of each file containing one timestep of a scalar field. Each timestep
needs to be loaded from disk. Once the data is loaded into memory,
an isosurface is generated. Then the resulting isosurface is written to
disk.

This pipeline was chosen because it includes reading the data from
disk, which is usually the bottleneck for large-scale parallel jobs, and
it also features creating an isosurface, which is one of the most com-
monly available and widely used visualization operations.

5.1 Assumptions

Certain assumptions are made with the models:

1. Each file is one timestep containing one scalar field

2. Due to past experience, we have found that isosurface and writes
scale almost linearly, so we assume these steps have perfect par-
allel scaling

3. The number of processes allocated per node (ppn) is constant

4. Each process is run on one core

5. In the spatio-temporal pipeline, the total number of processes is
evenly divisible by the time compartment size

6. In the spatio-temporal pipeline, each time compartment spans the
same number of nodes

5.2 Definitions

The following variables are used in the models.

• Let n be the total number of nodes used

• Let ppn be the number of processes per node used

• Let p be the total number of processes, found by p = n · ppn

• Let s f be the size of each file

• Let p f be the number of processes used to open one file

• Let n f be the total number of files in the dataset

• Let m f be the maximum number of files any process will touch

• Let bw be the bandwidth available to each node

• Let bwp be the bandwidth available to each process, found by
bw/ppn

• Let tc be the time compartment size

5.3 Spatial Parallelism Model

The spatial parallelism model is based on a decomposition that uses
only spatial parallelism, in which all processes are involved in pro-
cessing each timestep. Therefore, in the spatial parallelism model, m f
= n f . The total time to compute the pipeline, Ttotal , is found by

Ttotal = Tread +Tiso +Twrite (2)

Where Tread , Tiso, and Twrite are the time taken in each respective step
in the pipeline.

Let us first consider the pipeline steps other than read (modeling for
the read stage is addressed in Section 5.5). These steps are assumed to
have perfect linear scaling. Since each file goes through the pipeline,
each stage is encountered m f times,

Tiso = m f ·Tisop
Twrite = m f ·Twritep

(3)

Where Tisoi
, Twritei

is the time each respective step takes when i pro-
cesses are operating in parallel on one timestep. Since these stages
are assumed to have perfect linear scaling, the time for each of these
stages can be computed with the following equations:

Tisop
=

Tiso1

p
(4)

Twritep
=

Twrite1

p
(5)

Therefore, Ttotal can be characterized by the equation:

Ttotal = Tread +m f ·

[

Tiso1
+Twrite1

p

]

(6)



5.4 Spatio-Temporal Parallelism Model

In the spatio-temporal pipeline, processes are divided into time com-
partments. Each time compartment runs in parallel and acts indepen-
dently of each other. Therefore, the total running time will be the
maximum time any time compartment takes. This is equivalent to a
time compartment processing m f files. In the spatio-temporal model,
m f is found using the equation:

m f =

⌈

n f

p÷ tc

⌉

=

⌈

n f · tc

p

⌉

(7)

Similar to the spatial parallelism model, the total time is the sum of
each step in the pipeline.

Ttotal = Tread +Tiso +Twrite (8)

For all stages except read, the time of each step is

Tiso = m f ·Tisotc
Twrite = m f ·Twritetc

(9)

Similarly to equations 4 and 5,

Tisotc
=

Tiso1

tc
(10)

Twritetc
=

Twrite1

tc
(11)

Therefore, Ttotal can be written as

Ttotal = Tread +m f ·

[

Tiso1
+Twrite1

tc

]

(12)

How to model Tread is discussed in Section 5.5.

5.5 Read Performance Model

We now model the read times of both the spatial parallel model and
spatio-temporal model. Note that p f , the number of processes used
to open one file, is different for each model. For the spatial parallel
model, p f = p, while for the spatio-temporal model, p f = tc.

First, we start with the read time for one file, Tread1
, assuming per-

fect linear scaling. In this case, the read time is the size of one file
divided by the total available bandwidth.

Tread1
=

s f

bwp · p f
(13)

For both the spatial parallel and spatio-temporal methods, the max-
imum number of files read by any process is m f , so the total read time
for m f files is

Treadm f
= m f ·

[

s f

bwp · p f

]

(14)

In general, the use of parallelism does not scale perfectly. There
is always overhead associated with parallel algorithms, whether it is
communication or load imbalance. Since each file is spatially decom-
posed and read in parallel, we expect there to be overhead for each file
read.

Treadm f
= m f ·

[

s f

bwp · p f
+overhead

]

(15)

A parallel file system is a complicated system with many variables
and parameters that could affect its performance. In general, a good
rule of thumb is that the best I/O performance can be achieved by using
contiguous reads. As the number of contiguous reads decrease and the
number of file seeks increase, I/O performance will be impaired. To
show an example of this trend, timing tests were performed in which
a 1.4 GB file was read with a constant number of processes, but in-
creasing number of seeks. The file is cut into p ·ns contiguous pieces,
where ns is the number of seeks. Pieces are assigned round robin to
the processes. The results are shown in Figure 2. There is a clear

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K
seeks per proc

0

10

20

30

40

50

60

70

80

re
a

d
 t

im
e

 (
s)

Read Time vs Num Seeks

4 procs

16 procs

64 procs

256 procs

Fig. 2. I/O performance vs number of file seeks. A 1.4 GB file is read
using a set number of processes, with increasing number of seeks per
process. The read time increases as the number of seeks increase.

trend of increasing read time as the number of seeks increase, which
is apparent for all number of processes tested.

Thus, we base the overhead on the number of file seek operations
required to read the file. We assume that the file is written to disk in
such a way that spatial coordinates of the x-axis changes fastest, then
the y-axis, and finally the z-axis. With this file format, partitions can
be read row by row. Therefore the number of seeks can be estimated
as the number of rows in a partition, which we denote as ns (number
of seeks). Though this is not necessarily the actual number of seeks
the disk will perform in a parallel filesystem, we find it is a good esti-
mate. We also believe that as the number of concurrent processes used
to read a file grows, the read performance degrades due to increased
contention. Because of this, the overhead is also based on the number
of processes used to read in a file. Note that Figure 2 implies the oppo-
site, but that is because in that test the number of nodes and available
bandwidth increases as the number of processes increase. Therefore,
the final equation for overhead becomes

overhead = α ·ns+β · p f (16)

Both α , the time to perform a seek, and β , the amount of contention
introduced per process, are free parameters that are based on the hard-
ware characteristics of each machine. The final equation for the read
step now becomes

Treadm f
= m f ·

[

s f

bw · p f
+α ·ns+β · p f

]

(17)

5.6 Analysis of Models

Many inferences can be made from the previously described models.
One of the most important is how each method scales as the number
of files and processes increase. From the models, we can infer the
general performance trend of a weak scaling study (actual results of a
weak scaling study are discussed in Section 6). In weak scaling, the
amount of work per process is constant, so the amount of data grows
proportionately to the number of processes. Since it is assumed that
the isosurface and write step scale linearly in both methods, the major
difference will be how the read step behaves.

As the amount of work and number of processes increase, we ex-
pect the spatial parallelism method to incur more read overhead per
file. This is because as the number of processes grows, the number
of processes used to open a file increases. Each individual file will
be spatially split into more partitions, increasing the number of seeks
required to read the file. This will increase both the ns and p f terms
in Equation 16. Thus using spatial parallelism will result in worse file
access patterns as the number of processes grows.



8 16 32 64 128 256 512 1024 2048
num processes

10
1

10
2

10
3

10
4

10
5

T
o

ta
l 

T
im

e
 (

s)
Weak Scaling: POP on Mustang

spatial

spatio-temporal

Fig. 3. Weak scaling results between the spatio-temporal pipeline and
spatial parallelism. Run on Mustang using the POP dataset. The spatio-
temporal pipeline with optimized read access patterns scale significantly
better than the spatial parallelism method. At 2048 processes, there is
a difference of a factor of over 400 between the two methods.

For the spatio-temporal pipeline, as weak scaling increases, the time
compartment size is kept constant and more time compartments are
added to process the increased number of files. For example, if the
number of files and processes used in Figure 1 were doubled from 4
files and 8 processes to 8 files and 16 processes, then the processes
could be split into four time compartments, each composed of four
processes. Each time compartment would still process two files each.
In this situation, each file is still read by four processes, so the spa-
tial partitioning remains the same, thus the number of seeks needed
remains unchanged. Therefore the resulting overhead value of Equa-
tion 16 remains constant. Overall, we expect the spatio-temporal
pipeline to scale perfectly in a weak scaling study due to the fact that
the read pattern remains unchanged on a per file basis.

This perfect weak scaling of the spatio-temporal pipeline implies
that reading in multiple files by applying the same read pattern to each
file does not create any additional overhead for the filesystem. This
assumes that the number of nodes used per file remains fixed so that
the amount of bandwidth per file is constant.

6 RESULTS

In order to verify the accuracy of our model, several timings tests were
performed. We used two different climate datasets for these tests. The
first dataset is output from the Parallel Ocean Program (POP), a simu-
lation of the entire ocean, which we refer to as the POP dataset. The
data is composed of salinity values, and up to 256 timesteps were used.
The spatial resolution of each timestep is 3600 x 2400 x 42. Each file
is 1.4 GB, for a total size of roughly 350 GB. The other dataset used is
the output from a CAM (community atmospheric model) simulation,
which we refer to as ATM. Each timestep has spatial resolution of 1152
x 768 x 30, and a total of 16 timesteps were used. For both datasets,
files are stored in NetCDF format, and are read using the vtkNetCDF-
Reader class in VTK.

The tests involving the POP dataset were run on Mustang, a super-
computer at Los Alamos National Laboratory. Mustang features nodes
with dual-socket AMD 12-core MagnyCours and 64 GB of memory.
With a total capacity of 1600 compute nodes, the maximum number
of cores available is 38,400. Mustang uses the Panasas filesystem.

All tests with the ATM dataset were run on Hopper, a supercom-
puter at the National Energy Research Scientific Computing Center
(NERSC). Hopper contains two 12-core AMD MagnyCours and 32
GB memory per node. There are a total of 6,384 compute nodes, for a
total of 153,216 cores available. Hopper uses the Lustre filesystem.

24 48 96 192 384
num processes

10
0

10
1

10
2

10
3

T
o

ta
l 

T
im

e
 (

s)

Weak Scaling: ATM on Hopper

spatial

spatio-temporal

Fig. 4. Weak scaling results between the spatio-temporal pipeline and
spatial parallelism. Run on Hopper using the ATM dataset. The per-
formance of the spatio-temporal pipeline is orders of magnitude better
than the spatial method due to the difference in file access patterns.

6.1 Weak Scaling

Weak scaling studies were conducted using both datasets. The POP
dataset was run on Mustang. Tests began at one file and 8 processes,
and doubled until 256 files and 2048 processes were reached. The
number of nodes allocated was equal to the number of files, with 8
cores per node being used. The time compartment size was set to 8
for all tests. With this configuration, each time compartment consisted
of 8 processes all located on the same node, and each node held only
one time compartment. Each time compartment is responsible for pro-
cessing one file. For each file, it is first loaded into memory, then an
isosurface is generated, and finally the isosurface is written to disk.

The weak scaling tests using the ATM dataset were similarly con-
figured. All tests were run on Hopper, and the time compartment size
was chosen to be 24 for all tests. The number of files began at one
and the number of processes started at 24. Subsequent tests doubled
these values until 16 files and 384 processes were reached. The num-
ber of nodes allocated were equal to the number of files processed,
and 24 cores per node was used. This configuration resulted in each
node having one time compartment each, and each time compartment
processing one file. Files were processed using the same pipeline as
the POP tests described earlier.

Figure 3 shows the results from the POP tests on Mustang, and
Figure 4 shows the results from the ATM tests on Hopper. For both
tests, the spatio-temporal pipeline displayed significantly better per-
formance and scalability. For the POP tests, at 256 files and 2048
processes, the spatial parallelism method required roughly 29,000 sec-
onds (about 8 hours), while the spatio-temporal pipeline performed
the same amount of work using only 60 seconds. This resulted in a
speedup factor of over 480. Starting at 64 processes, the total time
of the spatial parallelism method began to double or more. The total
time of the spatio-temporal method stayed relatively flat, beginning at
20 seconds, inching up to 30 seconds at 1024 processes, and jumped
to 60 seconds at 2048 processes. We believe at 2048 processes, the
maximum bandwidth of the system had been reached, thus the dou-
bling of the time. Similar trends are shown for the ATM tests. The
spatio-temporal method outscales the spatial method by up to two or-
ders of magnitude. At 394 processes, the spatial method required 274
seconds, while the spatio-temporal method only took 6.5 seconds.

Given the three step pipeline of read, isosurface, and write, our
models assumed that the isosurface and write step would scale per-
fectly. The models also predicted that the read step would increase in
time when using only spatial parallelism, and would scale perfectly us-
ing the spatio-temporal pipeline due to differences between file access
patterns. Figure 5 and Figure 6 show the actual per component (read,
iso, write) breakdown of the weak scaling results. The spatial paral-



8 16 32 64 128 256 512 1024 2048
num processes

10
0

10
1

10
2

10
3

10
4

10
5

se
co

n
d

s

Spatial Parallelism: Average Component Times

read

iso

write

Fig. 5. Per component breakdown of results of the weak scaling tests
on the POP dataset for spatial parallelism.

8 16 32 64 128 256 512 1024 2048
num processes

10
0

10
1

10
2

se
co

n
d

s

Spatio-Temporal: Average Component Times

read

iso

write

Fig. 6. Per component breakdown of results of the weak scaling tests
on the POP dataset for the spatio-temporal pipeline.

lelism results in Figure 5 show that the isosurface computation step
does scale nearly perfectly. The write step begins to increase after 128
processes, but the write never consumes more than 1% of the overall
running time. As predicted by the model, the read step does steadily
increase as the number of processes rise, dominating the overall run-
ning time. Thus, the read pattern that resulted by using spatial paral-
lelism greatly impairs I/O read performance. For the spatio-temporal
pipeline, Figure 6 shows all three steps scaling well until 2048 pro-
cesses are used, in which case the read and write times increase. As
mentioned earlier, we believe the increase in read times is due to band-
width limitations, and the rise in write times may also be due to hard-
ware limitations. Up to 1024 processes, the read times remained fairly
steady, indicating that the spatio-temporal pipeline used a more opti-
mal file access pattern. Overall, our models have correctly predicted
the general trends of both the spatial parallelism and spatio-temporal
methods.

Our models not only let us discern the trends of different compo-
nents, but also can be used to obtain an estimate of the total running
time. Many variables, such as size of one file, number of files, and pro-
cesses per node, are dependent on the run configuration. Other vari-
ables, such as bwp (the bandwidth available to each process), Tiso1

, and
Twrite1

, can be found by performing small timings tests on one node.
The number of seeks, ns, can be calculated as the number of rows in
each spatial partition. Once all these variables are obtained, they can
be plugged into Equation 6 and Equation 12. The two free variables
in Equation 17, α and β , are then found by finding the best fit of the

modeled times to some actual results on the same machine.
Figure 7 compares the total time estimated from the model and the

actual results of the POP weak scaling tests. It was empirically found
that α = 7×10−6 and β = 0.001 provided the best fit. For the spatial
parallelism method, the modeled time tracks fairly close to the actual
results. The modeled times are almost always within the same order
of magnitude as the actual time. For the spatio-temporal method, the
model predicts perfect scaling, so the modeled time is a flat line in the
graph. The actual times track the modeled times well, especially at low
number of processes. At 2048 processes, the actual time spikes up, but
as stated earlier, we believe this is due to bandwidth limitations, which
the model does not account for.

The modeled and actual total time of the ATM weak scaling tests
are shown in Figure 8. A best fit was found by using α = 5×10−5

and β = 0.0001. Different values for α and β were expected since
these tests were run on a different supercomputer. For the spatial par-
allelism method, the modeled times track well with the actual times.
The greatest difference is at 48 processes, where the model estimate
was 30 seconds and the actual time was 11.5 seconds. For the spatio-
temporal method, the model always overestimates the total time, but
the actual difference is small. At 24 processes, the model estimate is 7
seconds, while the actual time is 3 seconds. Overall, our models pre-
dicted the total time of both the POP and ATM tests fairly accurately.

7 DISCUSSION

From the timing tests performed in Section 6, it can be seen that the
read pattern used by the spatio-temporal pipeline resulted in a massive
performance increase versus the read pattern induced by using only
spatial parallelism, since the main performance differential between
the two methods is the time involved in the read step. According to our
model, the way to reduce I/O read times are to choose read patterns
that minimize the number of seeks needed, while also reducing the
number of processes reading a file at once. Another implied concept
from the model that was seemingly proven from the timing tests is
the notion that reading multiple files in parallel using the same read
pattern will scale. This scaling can be seen in Figure 3, in which the
total time of spatio-temporal pipeline remains fairly flat up to 1024
processes. At 1024 processes, 128 files of size 1.4 GB each are being
read in parallel using the same read pattern of 8 processes per file.

One possible method to reduce I/O read times is to decrease the
number of seeks by changing the way spatial partitioning is performed.
For example, if a 2D array were stored such that x changed fastest and
then y, then partitioning along the y-axis would result in contiguous
pieces. Both the spatial parallelism and spatio-temporal method would
benefit from more contiguous partitioning. Assuming the data for-
mat of one file per timestep, even with a different partitioning scheme,
the read patterns from using the spatio-temporal pipeline will proba-
bly still have better performance than the file access patterns resulting
from the spatial method, since spatial parallelism forces each file to be
partitioned into many more pieces. This results in exponentially more
seeks when reading data from disk.

The spatio-temporal pipeline introduces one major parameter, the
size of a time compartment. This parameter is important because it in-
directly controls the file access read pattern, which plays a large role in
I/O performance. Unfortunately, our model does not explicitly solve
for this variable, but several guidelines can be suggested. If there is no
limit to the number of nodes that can be allocated, then one strategy
to obtain the best performance is to first find the optimal number of
processes for one file, then scale out by duplicating that configuration
to multiple nodes. For example, the configuration of the weak scaling
tests on the POP dataset in Section 6 was simply to use 8 processes
per node for each file, even though there were 24 cores available per
node. According to our model, scaling out by duplicating the run con-
figuration should not increase the total running time of the program.
If there is a limit to the number of nodes that can be allocated, then
the best strategy would be to try to utilize each node as efficiently as
possible. One way to increase efficiency per node is to place multiple
time compartments per node, assuming there is enough memory per
node to load multiple files at once. Overall read performance will de-



8 16 32 64 128 256 512 1024 2048
num processes

10
1

10
2

10
3

10
4

10
5

se
co

n
d

s
Spatial Parallelism - Total Time: Modeled vs Actual

modeled total time

actual total time

(a) Spatial Parallelism

8 16 32 64 128 256 512 1024 2048
num processes

10
1

10
2

10
3

10
4

10
5

se
co

n
d

s

Spatio-Temporal - Total Time: Modeled vs Actual

modeled total time

actual total time

(b) Spatio-Temporal Parallelism

Fig. 7. Modeled total times versus actual total times for the spatial parallelism and spatio-temporal weak scaling tests on Mustang for the POP
dataset. The model was used with α = 7×10−6 and β = 0.001. Overall, the modeled time duplicates the trends seen in the actual times.

24 48 96 192 384
num processes

10
0

10
1

10
2

10
3

se
co

n
d

s

Spatial Parallelism - Total Time: Modeled vs Actual

modeled total time

actual total time

(a) Spatial Parallelism

24 48 96 192 384
num processes

10
0

10
1

10
2

10
3

se
co

n
d

s

Spatio-Temporal - Total Time: Modeled vs Actual

modeled total time

actual total time

(b) Spatio-Temporal Parallelism

Fig. 8. Modeled total times versus actual total times for the spatial parallelism and spatio-temporal weak scaling test on Hopper for the ATM dataset.
The model was used with α = 5×10−5 and β = 0.0001. The modeled times are within the same order of magnitude, and track the actual times well
at higher process counts.

crease since a node’s I/O bandwidth is now divided over multiple files,
but in practice this is offset by the increase in node efficiency. This is
due to the fact that reading a file with one node will rarely saturate the
network link. For example, changing the previously mentioned config-
uration for the POP dataset tests to 16 processes and 2 time compart-
ments per node results in each node processing two files at once. This
results in an increase of about 20% to total time. The benefit is that
only half the number of nodes is needed as before in order to perform
the same amount of work. Similar to the earlier guideline, first find the
most efficient configuration using one node, and simply duplicate the
configuration and scale it out to multiple nodes.

In this paper, we have focused on one very common file format,
in which each file is one timestep of one scalar field. Although we
have not tested other file formats, our models are general enough that
they can be used to estimate the performance of any file format given a
certain read pattern. Checking the accuracy of the model and obtaining
timing results with a variety of different file formats is left for future
work.

Using ParaView and UV-CDAT is not strictly necessary to utilize
different read patterns in order to improve I/O performance. If a user
had access to a program that could process one file, then temporal par-
allelism can be achieved by simply instantiating that program multiple
times with different input files. Changing the file access patterns with
this method could result in substantial performance gains. One prob-

lem with this strategy, though, is that the job scheduler may limit the
number of concurrent active jobs from one user. For example, the job
scheduler on Mustang limits each user to only two active jobs per user.
This is the equivalent of having two time compartments, and limits the
amount of temporal parallelism, and ultimately limiting the number of
read patterns possible. Thus a more integrated option to utilize tem-
poral parallelism is necessary. Also, instantiating a program multiple
times will only work for the time-independent use case. It will not
work for the time-dependent use case, since communication is needed
among different timesteps.

8 CONCLUSION

When decomposing a problem into parallel tasks, the read pattern
which the decomposition imposes is often an overlooked aftereffect.
More importance needs to be placed on this aspect, since the file access
pattern, combined with the format of the stored data, plays a signifi-
cant role in I/O read performance. In this paper, we have introduced
a model which can estimate the I/O read time for a file, given the par-
titioning of the file. Using this model we were able to configure the
spatio-temporal pipeline to use read patterns which obtained greater
I/O performance versus read patterns produced by the more common
method of spatial parallelism. Several timing tests were performed,
and the file access patterns resulting from the spatio-temporal pipeline
achieved over a factor of more than 400 speedup over the read patterns



used by the spatial method. Our timing tests also indicate that reading
multiple files using the same read pattern scales well with modern par-
allel filesystems. The spatio-temporal pipeline is implemented in the
ParaView bundled alongside UV-CDAT, and it can be utilized by users
today [1].

For future work, we plan on investigating the time-dependent use
case further. A model will be developed that incorporates the extra
overhead of the reduction step, and scaling studies will be performed
to verify these models. We also plan on studying the performance
implications of different file access patterns for with different data for-
mats, such as having multiple timesteps packed into one file.

ACKNOWLEDGMENTS

This work has been funded by the Ultrascale Visualization - Climate
Data Analysis Tools (UV-CDAT) project. The authors would like
to thank Matthew Maltrud of Los Alamos National Laboratory and
Michael Wehner of Lawrence Berkeley National Laboratory for pro-
viding the climate data used in our timing tests.

REFERENCES

[1] UV-CDAT Spatio-Temporal Parallel Processing Tools.
http://uv-cdat.llnl.gov/presentations/PDF/ParaViewSTPWiki.pdf,
2013.

[2] J. Biddiscombe, B. Geveci, K. Martin, K. Moreland, and D. Thomp-
son. Time dependent processing in a parallel pipeline architecture. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1376–
1383, Nov. 2007.

[3] D. Camp, H. Childs, A. Chourasia, C. Garth, and K. I. Joy. Evaluating
the benefits of an extended memory hierarchy for parallel streamline al-
gorithms. In Large Data Analysis and Visualization (LDAV), 2011 IEEE
Symposium on, pages 57–64. IEEE, 2011.

[4] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, G. H. Weber,
E. W. Bethel, et al. Extreme scaling of production visualization software
on diverse architectures. Computer Graphics and Applications, IEEE,
30(3):22–31, 2010.

[5] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Marion, B. Geve-
cik, M. Rasquin, and K. E. Jansen. The paraview coprocessing library:
A scalable, general purpose in situ visualization library. In Large Data
Analysis and Visualization (LDAV), 2011 IEEE Symposium on, pages 89–
96. IEEE, 2011.

[6] W. Kendall, J. Huang, T. Peterka, R. Latham, and R. Ross. Toward a gen-
eral i/o layer for parallel-visualization applications. Computer Graphics
and Applications, IEEE, 31(6):6–10, 2011.

[7] C. Michell, J. Ahrens, and J. Wang. Visio: Enabling interactive visual-
ization of ultra-scale, time series data via high-bandwidth distributed i/o
systems. pages 1–12. IEEE International Parallel and Distributed Pro-
cessing Symposium, May 2011.

[8] M. L. Norman and A. Snavely. Accelerating data-intensive science with
gordon and dash. In Proceedings of the 2010 TeraGrid Conference,
page 14. ACM, 2010.

[9] B. Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and T. Peterka. Parallel
particle advection and ftle computation for time-varying flow fields. In
Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, SC ’12, pages 61:1–61:11, Los
Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[10] T. Peterka, R. Ross, A. Gyulassy, V. Pascucci, W. Kendall, H.-W. Shen,
T.-Y. Lee, and A. Chaudhuri. Scalable parallel building blocks for custom
data analysis. In Large Data Analysis and Visualization (LDAV), 2011
IEEE Symposium on, pages 105–112. IEEE, 2011.

[11] Prabhat, O. Rbel, S. Byna, K. Wu, F. Li, M. Wehner, and W. Bethel.
Teca: A parallel toolkit for extreme climate analysis. Procedia Computer
Science, 9(0):866 – 876, 2012. ¡ce:title¿Proceedings of the International
Conference on Computational Science, {ICCS} 2012¡/ce:title¿.

[12] V. Vishwanath, M. Hereld, and M. E. Papka. Toward simulation-time data
analysis and i/o acceleration on leadership-class systems. In Large Data
Analysis and Visualization (LDAV), 2011 IEEE Symposium on, pages 9–
14. IEEE, 2011.

[13] B. Whitlock, J. M. Favre, and J. S. Meredith. Parallel in situ coupling
of simulation with a fully featured visualization system. In Proceedings
of the 11th Eurographics conference on Parallel Graphics and Visualiza-
tion, pages 101–109. Eurographics Association, 2011.

[14] D. Williams, C. Doutriaux, J. Patchett, S. Williams, G. Shipman,
R. Miller, C. Steed, H. Krishnan, C. Silva, A. Chaudhary, P. Bremer,
D. Pugmire, W. Bethel, H. Childs, M. Prabhat, B. Geveci, A. Bauer,
A. Pletzer, J. Poco, T. Ellqvist, E. Santos, G. Potter, B. Smith, T. Maxwell,
D. Kindig, and D. Koop. The ultra-scale visualization climate data anal-
ysis tools (uv-cdat): Data analysis and visualization for geoscience data.
Computer, PP(99):1–1, 2013.

[15] M. Woitaszek, J. M. Dennis, and T. R. Sines. Parallel high-resolution cli-
mate data analysis using swift. In Proceedings of the 2011 ACM interna-
tional workshop on Many task computing on grids and supercomputers,
MTAGS ’11, pages 5–14, New York, NY, USA, 2011. ACM.

[16] J. Woodring, S. Mniszewski, C. Brislawn, D. DeMarle, and J. Ahrens.
Revisiting wavelet compression for large-scale climate data using jpeg
2000 and ensuring data precision. In Large Data Analysis and Visualiza-
tion (LDAV), 2011 IEEE Symposium on, pages 31–38. IEEE, 2011.

http://uv-cdat.llnl.gov/presentations/PDF/ParaViewSTPWiki.pdf

	Introduction
	Related Work
	Spatial and Temporal Parallelism
	The Spatio-temporal pipeline
	Models
	Assumptions
	Definitions
	Spatial Parallelism Model
	Spatio-Temporal Parallelism Model
	Read Performance Model
	Analysis of Models

	Results
	Weak Scaling

	Discussion
	Conclusion

